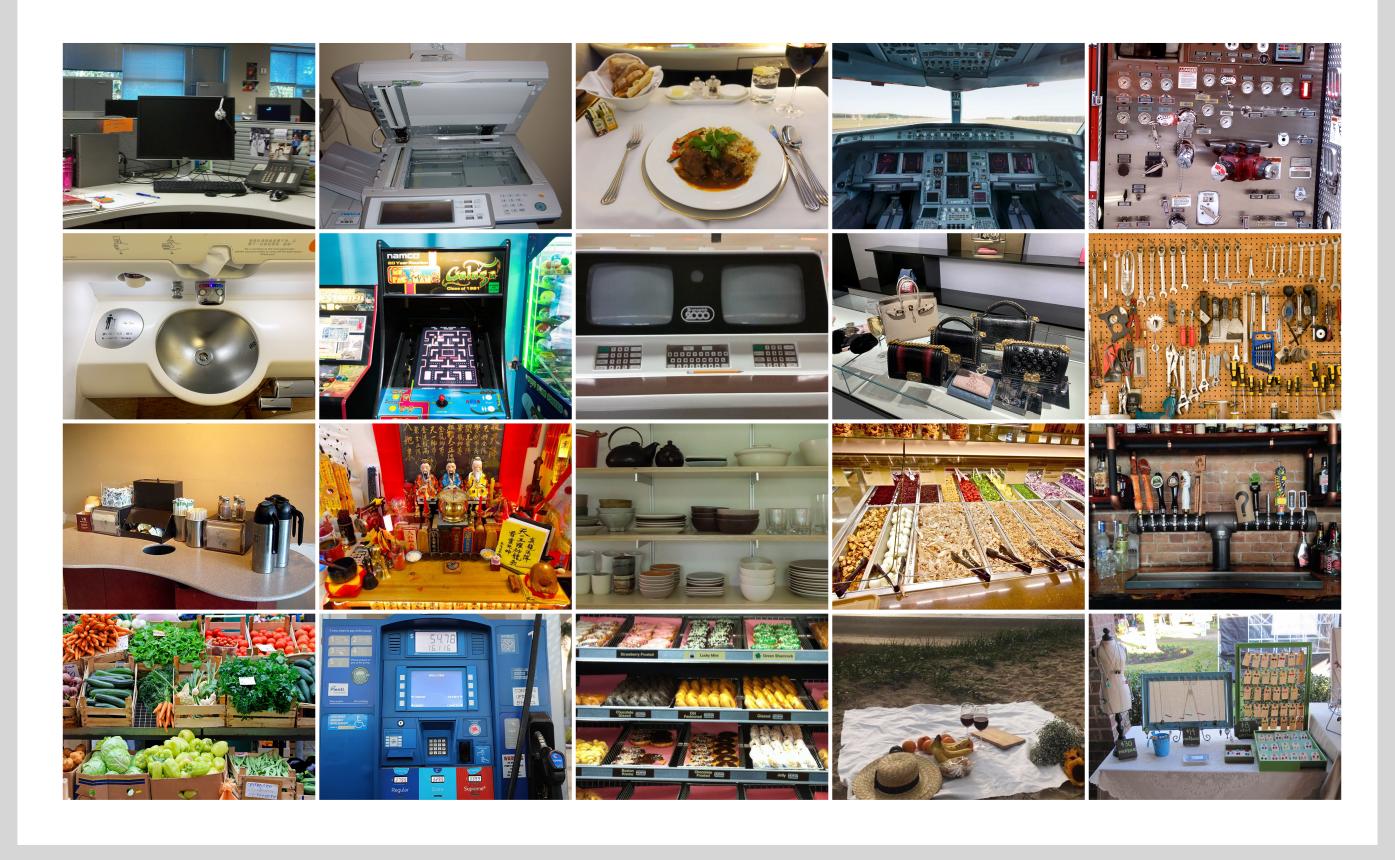


Introduction

Explicit similarity judgments can reveal the factors that shape how we reason about the world

What factors and distinctions characterize intuitive judgments of reachspace similarity?



Method

Approach: Capture the representational space of 990 reachspace images.

1. Simuli

- 990 Images: 3 images each from 330 categories
- Drawn from Reachspace Database (<u>osf.io/bfyxk</u>)
- Very wide sampling of reachspace views

2. Behavioral task

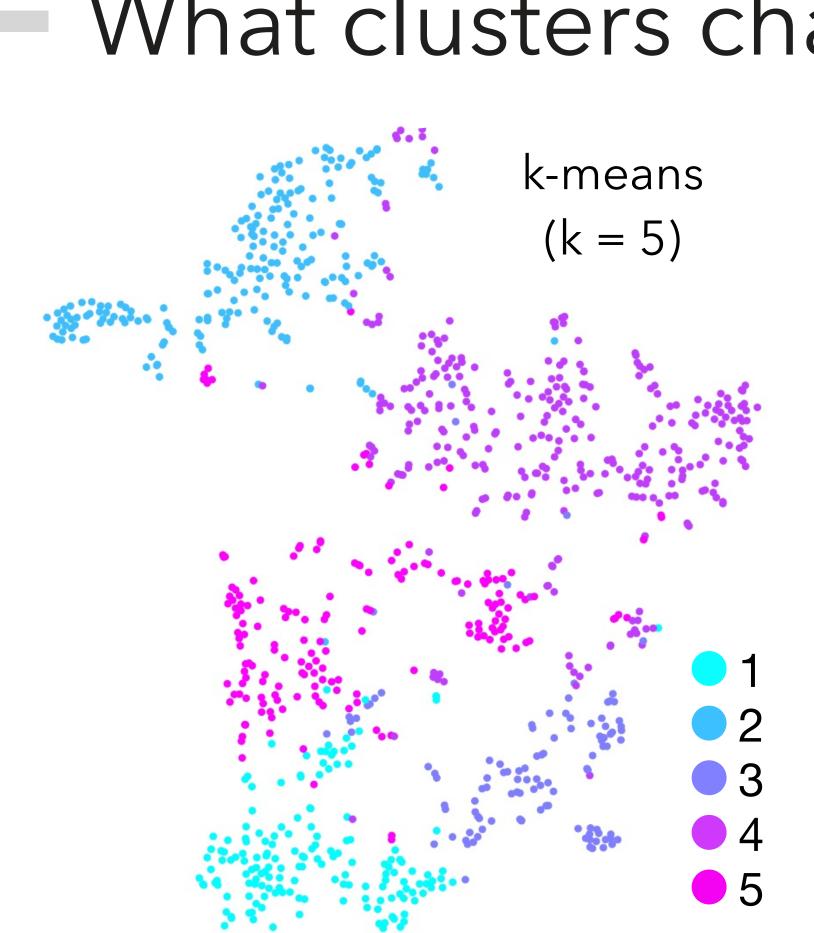
- Triplet similarity: "Which is the odd-one-out?"
- ~1.25 million trials on Mechanical Turk (0.8% of total possible triplets)
- 20 trials per HIT, no trial limit
- Stringent data quality checks enforced

3. Modeling

- Sparse Positive Similarity Embeddings (Hebart et al., 2021)
- Predictive model of similarity judgments
- Derives embedding for images: learns weights along inferred dimensions
- SPOSE model yielded 30-dimensional embedding

Does SPOSE embedding accurately predict similarity judgments?

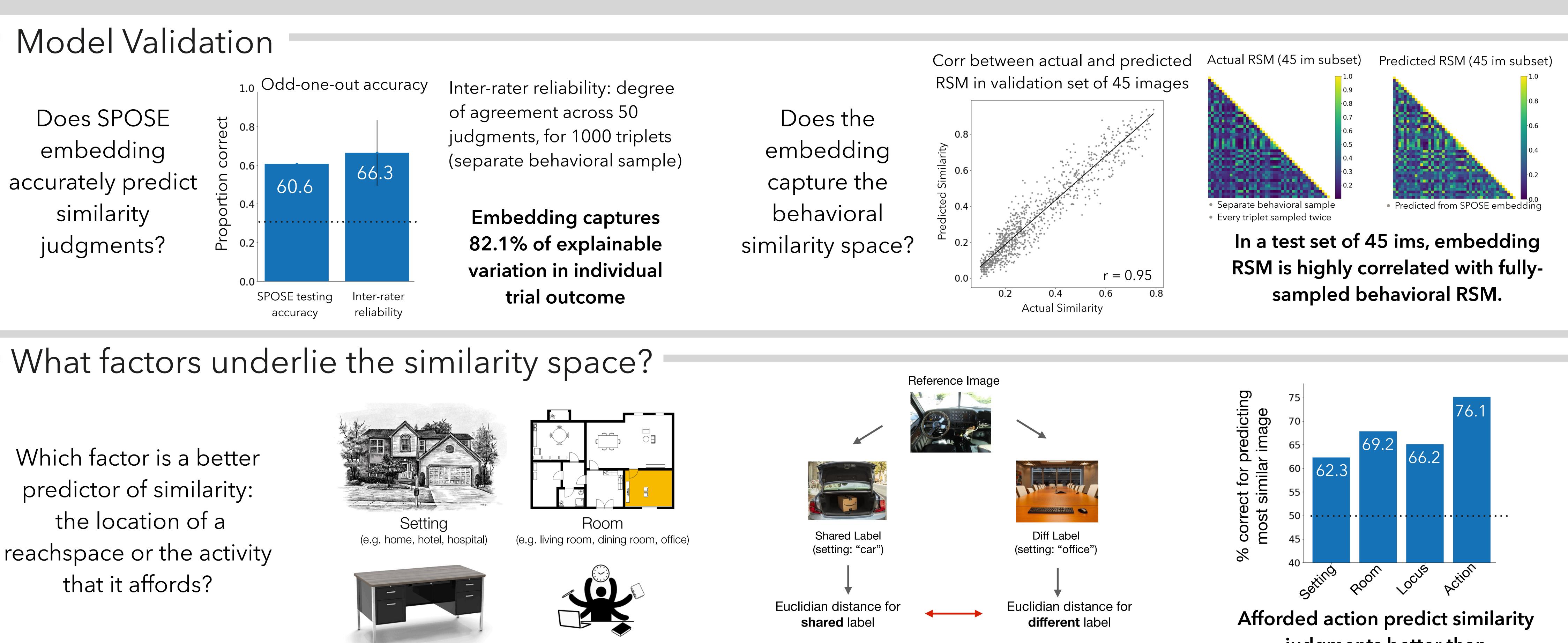
Which factor is a better predictor of similarity: the location of a reachspace or the activity that it affords?



Acknowledgments: This work was supported in part by NIH grant R21EY031867 to T.K., a Foundations of Human Behavior grant to E.J., and the Harvard Data Science Initiative Special Projects Fund.

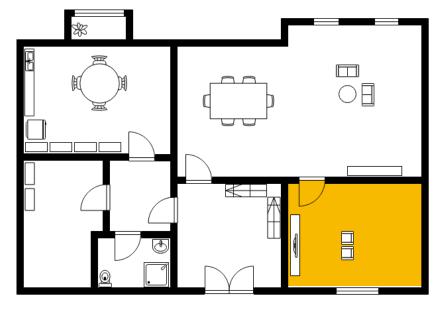
Emergent dimensions underlying human perception of the reachable world

Emilie L. Josephs, Martin N. Hebart & Talia Konkle





Interaction Locus



Action

cake decorating, titrating)

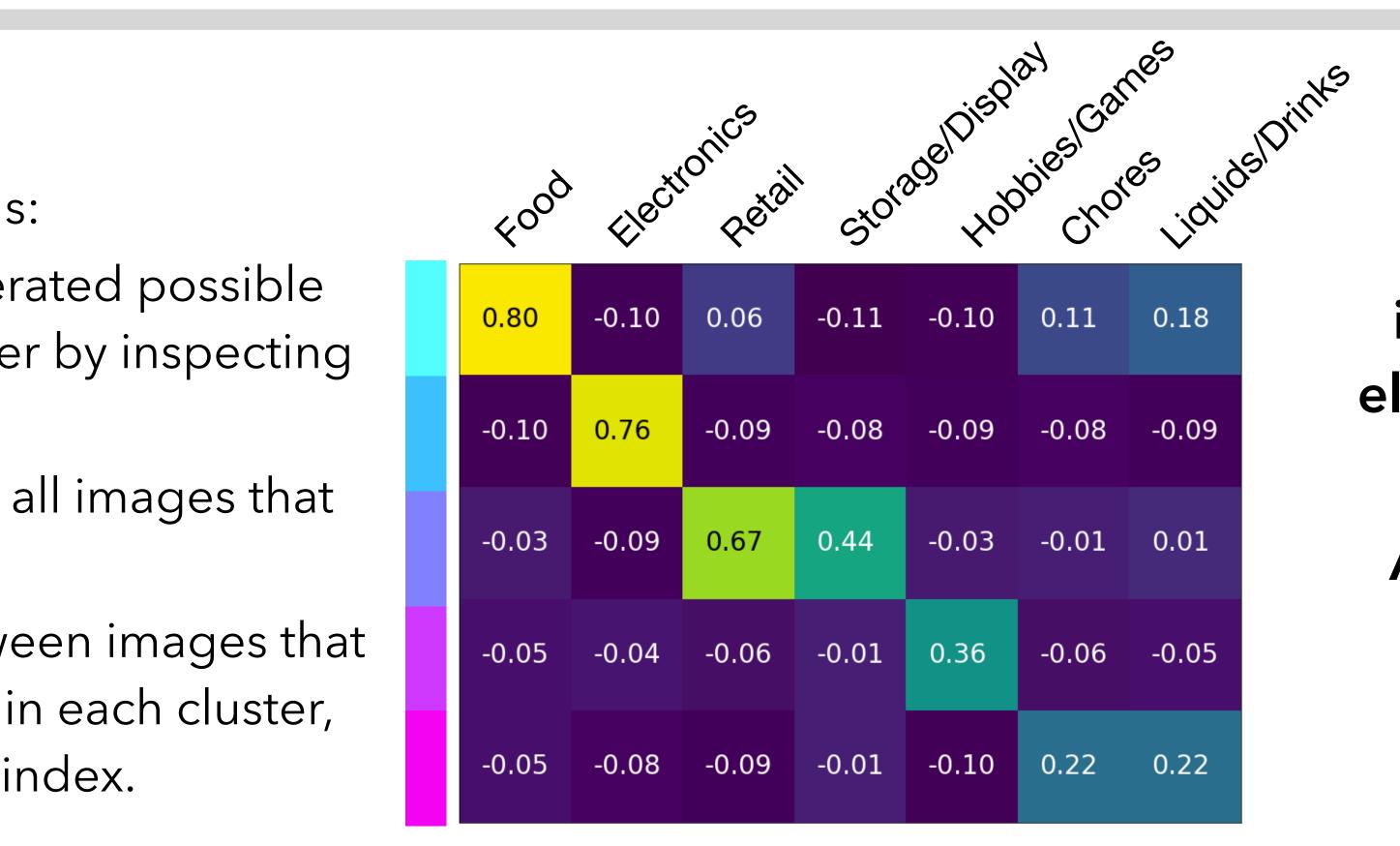
What clusters characterize this space?

Assigning cluster labels:

- Experimenters generated possible labels for each cluster by inspecting images in them
- MTurk task: Indicate all images that fit a given label.
- Assess overlap between images that fit label and images in each cluster, with Adjusted Rand index.

What percent of time were RSs which share a label judged more similar than RSs which didn't (Euclidean distance)?

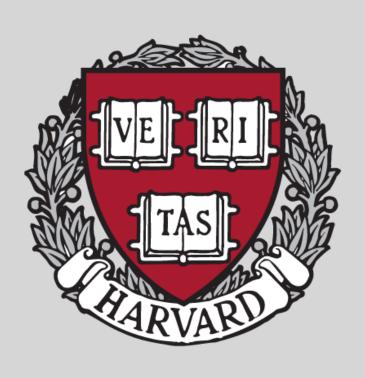




Do images with given label match any clusters? Adjusted Rand Index (range: 0-1; 0=no correspondence)

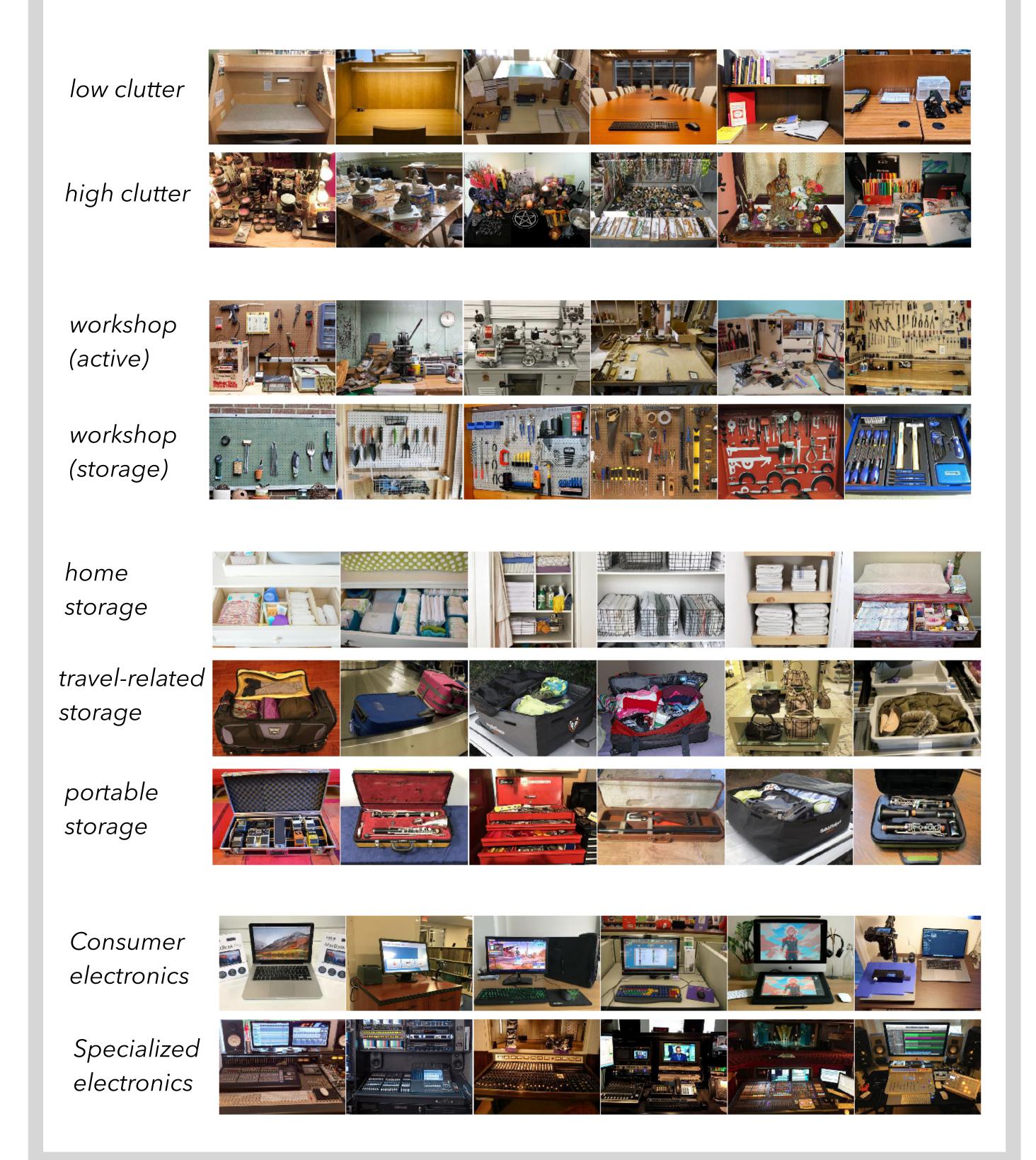
Clear clusters among these images for food-related, and electronics-related reachspaces.

Additional clusters for spaces related to display/storage, games/hobbies/crafts, and household chores/liquids.



Model Dimensions

A closer look at the embedding dimensions reveals nuanced distinction among reachspaces. (Here, we spotlight 9 out of 30 dimensions)



Conclusions

- How we reason about reachspaces relates to the things that we do in the space.
- Echoes "design stance" toward objects and scenes (Keleman & Carey, 2007; Greene, Baldassano, Esteva, Beck & Fei Fei., 2016)
- Suggests that the design stance shapes reasoning across a broad range of inputs and experiences.

Can interpret clusters through action lens:

- Food -> involves ingesting, hand-to-mouth kinematics
- Electronics -> reasoning about hidden states, button or keypress kinematics
- Non-active spaces -> occulomotor or simple grasping demands